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It is often necessary to establish construction zones on roadways for pavement and bridge repair 
and rehabilitation activities.  A construction zone reduces the number of lanes available for 
traveling vehicles and therefore forms a bottleneck section for traffic flow.  The ability of 
dynamically predicting traffic flow rates with real-time data is essential for both highway 
engineers and construction contractors.  For highway engineers, the predicted values of traffic 
flow rates could be utilized to maintain smooth traffic flows at construction zones.  It would 
enable them to apply traffic control measures to prevent traffic congestion at construction zones 
rather than to deal with traffic problems after traffic congestion already occurred.  For contractors, 
knowing the future traffic conditions around construction zones would be great advantageous in 
scheduling construction activities and equipment movements.  It was found in this study that using 
the Kalman predictor in combination with the first-order autoregressive time series provided 
satisfactory dynamic predictions of construction zone traffic flow.  A prediction of traffic flow at a 
construction zone also constitutes a prediction of traffic congestion if the traffic capacity of the 
construction zone is known.  If the predicted traffic flow rate is equal to or greater than the traffic 
capacity, then traffic congestion is expected in the coming time period and appropriate traffic 
control actions can be taken to prevent the traffic congestion. 
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Introduction 
 
It is often necessary to establish construction zones on roadways for pavement and bridge repair 
and rehabilitation activities.  A construction zone reduces the number of lanes available for 
traveling vehicles and therefore forms a bottleneck section for traffic flow.  Traffic congestion 
occurs at a construction zone when traffic flow exceeds the capacity of the construction zone.  
Consequently, during congestion vehicles go through the construction zone at reduced speeds 
and with fluctuated traffic flow rates (Jiang, 1999).  Vehicles on the roadway, including 
construction vehicles that haul construction materials to or from the construction zone, endure 
considerably greater traffic delays at the construction zone under congested traffic conditions 
than under uncongested conditions.  Therefore, the ability of dynamically predicting traffic flow 
rates with real-time data is essential for both highway engineers and construction contractors.  
For highway engineers, the predicted values of traffic flow rates could be utilized to maintain 
smooth traffic flows at construction zones.  It would enable them to apply traffic control 
measures to prevent traffic congestion at construction zones rather than to deal with traffic 
problems after traffic congestion already occurred.  For contractors, knowing the future traffic 
conditions around construction zones would be great advantageous in scheduling construction 
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activities and equipment movements.  As traffic flow is maintained smooth and traffic 
congestion is prevented, the safety of the motorists and construction workers can be improved. 
 
Several methods of adaptive traffic forecasting have been explored by researchers.  Ahmed and 
Cook (1982) applied the time series methods to provide short-term forecast of traffic 
occupancies for incident detection.  Okutani and Stephanedes (1984) employed the Kalman 
filtering theory in dynamic prediction of traffic flow.  Davis et al. (1990) used pattern 
recognition algorithms to forecast freeway traffic congestion.  Lu (1990) developed a model of 
adaptive prediction of traffic flow based on the least-mean-square algorithm.  As part of the 
effort to improve traffic control at construction zones, this study applied the time series theory 
and Kalman filtering theory to adaptively predict traffic flow at the construction zones on 
Indiana’s freeways with real-time data.  It was found that using the Kalman predictor in 
combination with the autoregressive process of time series could provide satisfactory dynamic 
predictions of construction zone traffic flow.  As traffic capacity values of Indiana’s freeway 
construction zones were determined (Jiang, 1999), a prediction of traffic flow also constitutes a 
prediction of traffic congestion.  If the predicted traffic flow rate is equal to or greater than the 
traffic capacity, traffic congestion is expected in the coming time period and appropriate traffic 
control actions can be taken to prevent the traffic congestion. 
 
 

Construction Zone Types and Data Collection 
 
Construction zone is defined in the 1994 Highway Capacity Manual (TRB, 1994) as “an area of 
highway in which maintenance and construction operations are taking place that impinge on the 
number of lanes available to moving traffic or affect the operational characteristics of traffic 
flowing through the area”.  This study focused on the two types of construction zones used on 
Indiana’s four-lane divided highways, as shown in Figures 1 and 2 and defined as follows 
(FHWA, 1989): 
 

1. Partial Closure (or single lane closure) - when one lane in one direction is closed, 
resulting in little or no disruption to traffic in the opposite direction. 

2. Crossover (or two-lane two-way traffic operations) - when one roadway is closed and the 
traffic, which normally uses that roadway, is crossed over the median, and two-way 
traffic is maintained on the other roadway. 

 

 
 

Figure 1.  Partial closure construction zone. 
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Figure 2.  Crossover construction zone. 
 
Traffic data at select construction zones on interstate highway sections was collected between 
October 1995 and April 1997.  Traffic counters with road tubes were used for data collection.  
Traffic volume, vehicle speed and classification were recorded in order of time series.  The 
vehicle counters were set up to classify the detected vehicles into three groups: 1). passenger 
cars, 2) heavy trucks and 3) buses.  To express traffic flow in passenger cars per hour, the traffic 
flow rate was converted to hourly volume and the adjustment factors from the 1994 Highway 
Capacity Manual were used to convert trucks and buses to passenger car equivalents. 
 
 

Prediction of Traffic Flow Using Time Series 
 
Based on the collected traffic data, the traffic capacity values were determined (Jiang, 1999) for 
four types of construction zone layouts on Indiana four-lane freeways, i.e., crossover 
construction zone in the opposite direction, crossover construction zone in the crossover 
direction, partial closure with right lane closed, and partial closure construction zone with left 
lane closed.  Table 1 presents the four construction zone capacity values obtained with traffic 
data at construction zones on Indiana four-lane freeways (Jiang, 1999). 
 
Table 1 
 
Traffic Capacities of Construction Zones on Indiana’s Four-Lane Freeways 
Construction Zone Type Traffic Capacity 
Crossover (Opposite Direction) 1745 Passenger Cars Per Hour 
Crossover (Crossover Direction) 1612 Passenger Cars Per Hour 
Partial Closure (Right Lane Closed) 1537 Passenger Cars Per Hour 
Partial Closure (Left Lane Closed) 1521 Passenger Cars Per Hour 
 
Given the construction zone capacity values, it was desired to develop methods to predict traffic 
flow and congestion at construction zones so that appropriate traffic control strategies could be 
applied to avoid traffic congestion and to reduce traffic delay.  Traffic flow rate constantly 
changes with time on any given highway sections.  To predict traffic conditions, the relationship 
between traffic flow and time must be studied.  The time series theory (Cryer 1986, Bowerman 
and O’Connell, 1979) is a frequently used tool to study the traffic and time relationship.  One of 
the time series models is the autoregressive process {Z(t)}.  A pth-order autoregressive process, 
AR(p), satisfies the following equation: 
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This equation requires that the mean of the series has been subtracted out so that Z(t) has a zero 
mean (Cryer, 1986).  This time series implies that the current value of the series Z(t) is a linear 

combination of the p most recent past values of itself plus an error term . 
 
To show the use of the time series method in traffic flow prediction, the recorded traffic flow 
data at a construction zone on Interstate 65 over Indiana’s State Road 46 was selected for fitting 
the first-order autoregressive process model.  It was a crossover construction zone for bridge 
rehabilitation.  The traffic flow data was collected inside the construction zone in the crossover 
direction at 10-minute intervals from 4:00 a.m. to noon on November 2, 1996.  Figure 3 shows 
the observed traffic flow rates in order of time.  With the traffic flow data at this construction 
zone, an AR(1) model was fitted using the Minitab (1996) software.  The AR(1) equation for the 
traffic flow rate is expressed as follows: 
 

 
 

 
Figure 3. Observed construction zone traffic flow. 
 
In Equation 2, f(t) denotes the traffic flow rate at time t.  As expressed by the equation, the traffic 
flow rate at time t, f(t), can be predicted from the traffic flow rate observed at the most recent 
past time point t-1, f(t-1).  It should be noted that the mean of the series of traffic flow rates must 
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be subtracted from f(t) as required by the autoregressive model of Equation 1.  The actual 
prediction is then the calculated f(t) plus the mean.  If f(t-1) is given, then f(t) can be predicted as: 
 

 
 

In this equation,  is the estimate of , and  is the predicted value of f(t) based on the 
most recent observed traffic flow rate, f(t-1).  Through this equation, predictions of traffic flow 
rates at the given construction zone were calculated from 4:00 a.m. to noon at 10-minute 
intervals.  For comparison, plotted in Figure 4 are the predicted and observed values of the traffic 
flow rates. 
 

 
Figure 4.  Observed and time series predicted traffic flow rates. 
 
The curves in Figure 4 indicate that the predicted values followed the patterns of the observed 
traffic flows.  The accuracy of the time series predictions is reflected by the values of residuals.  
In this case, a residual is the difference between the observed traffic flow rate and the traffic flow 

rate predicted by the time series model, that is, residual = .  The residuals of the 
time series predictions are listed in Appendix A for all data points during the eight-hour period.  
To examine the magnitudes of the residuals, the absolute values of the residuals were used to 
calculate the statistics.  As shown in Appendix A, the absolute values of residuals have a mean of 
83.9, a standard deviation of 72.9, and a minimum of 1.7, and a maximum of 276.1.  Although 
these values are not extremely unacceptable, they certainly suggest the needs for improvement in 
the accuracy of the time series predictions. 
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Prediction of Traffic Flow Using Kalman Predictor in Combination with Time Series 
 
One of the applications of control theory is to use the Kalman predictor (Bozic, 1979) in 
recursive predictions of random signal processes.  For example, the signal model can be a first-
order autoregressive process: 
 

 
 
The observation (or measurement) is affected by additive random error vt: 
 

 
 
The Kalman predictor for the above signal model can be expressed as follows: 
 
Predictor equation: 
 

 
 
Predictor gain: 
 

 
 
Prediction mean-square error: 
 

 
 
Equations 6, 7 and 8 are called one-step Kalman predictor of the signal process expressed by 
Equations 4 and 5.  The Kalman method yields the estimate of x(t + 1), i.e. the signal at time t+1, 
given the measured data x(t) and the previous estimate at time t.  It can be proved (Bozic, 
1979) that this one-step prediction estimate, denoted as , is an optimum estimate because 
the Kalman recursive prediction process minimizes the mean-square prediction error 

. 
 
Some features of the Kalman predictor, such as recursive, continuously incorporating the most 
recent real-time data, and optimum prediction, are exactly the desirable functions for an efficient 
traffic flow prediction model.  To use the Kalman predictor in traffic flow prediction, the AR(1) 
time series model as in Equation 2 can be used as the traffic flow model, that is: 
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Equation 9 is the first-order autoregressive process for the traffic flow.  In addition, the 
observation (or measurement) of the traffic flow, m(t), is affected by additive random error vt: 
 

 
 
Equation 10 is related to the accuracy of the traffic data measurement devices used in data 
collection.  The one step Kalman recursive prediction equations can then be readily obtained 
from Equations 6 through 8: 
 
Predictor equation: 
 

 
 
Predictor gain: 
 

 
 
Prediction mean-square error: 
 

 
 
With Equations 9 through 13, traffic flow rate at t+1, f(t + 1), can be predicted as for 
each observed data at time t, f(t).  Since Equation 9 is a time series model of the first order 
autoregressive process, this Kalman predictor model is a combination of the time series and the 
Kalman predictor.  It was expected that this prediction model would improve the prediction 
accuracy over the time series model as defined in Equation 2.  To verify this, the Kalman 
predictor model was also applied to the construction zone traffic flow data described in Figure 3.  
The predicted traffic flow rates from the Kalman predictor along with the corresponding 
observed values and the values from the time series method are plotted in Figure 5. 
 
As shown in the figure, most of the predicted values from the Kalman model are closer to the 
observed values than the predicted values from the time series model.  This indicates that the 
Kalman method indeed improved the prediction accuracy over the time series method.  The 
differences in the prediction accuracy of the two methods can be more clearly described by 
plotting their corresponding residual values into the same graph, as shown in Figure 6.  The 
residual graph distinctly shows that the most residuals of the Kalman predictions are 
considerably smaller than those of the time series predictions.  Therefore, the improvement of the 
Kalman predictor over the time series method in traffic flow prediction is apparent and 
significant. 
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Figure 5.  Observed and Kalman and time series predicted traffic flow rates. 
 

 
Figure 6.  Residuals of Kalman predictor and time series predictions. 
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For a quantitative comparison, the values of the observed and predicted traffic flow rates are 
presented in Appendix B with the corresponding residual values.  In addition, the differences 
between the absolute values of the time series and Kalman residuals are also included in the 
table.  Because there are positive and negative residuals, the use of the absolute values of the 
residuals is to compare the magnitudes of the residuals from the two prediction methods.  The 
magnitude of a residual is the difference between the observed value and the predicted value.  
Therefore, a more accurate prediction yields a smaller magnitude of residual.  If the absolute 
value of time series residual (TR) minus the absolute of Kalman residual (KR) is positive, i.e., 
abs(TR)-abs(KR) > 0, then the magnitude of time series residual is greater than the Kalman 
residual, indicating the time series prediction is less accurate than the Kalman prediction. 
 
As shown in the last column of Appendix B, there are 40 positive values and 9 negative values of 
abs (TR)-abs (KR).  This indicates that 40 out of the 49 Kalman predictions are more accurate 
than the time series predictions.  The statistics of the absolute values of residual were also 
calculated for the predictions from the two methods.  As shown in Appendix B, the Kalman 
predictions have smaller values of mean, standard deviation, minimum and maximum of the 
absolute residuals than the time series predictions.  Compared to the time series predictions, the 
Kalman predictions reduced the mean of the absolute residual values by (83.9-37.1)/83.9=55.8% 
and the standard deviation by (72.9-29.0)/72.9=60.2%.  These large reductions in the values of 
the mean and standard deviation represent a significant improvement in the traffic flow 
predictions. 
 
To statistically compare the predictions of the two methods, a paired t-test was performed.  Since 
a t-test requires the data follow a normal distribution, the Anderson-Darling normality test 
(Minitab, 1996) was used to check if the absolute values of the residuals follow a normal 
distribution.  The normality test resulted in a p-value of 0.000 for the absolute values of the time 
series residuals and a p-value of 0.015 for the absolute values of the Kalman residuals, indicating 
neither of the data sets follows a normal distribution at a level of .  Then the data sets 

were transformed by square root of the absolute values of the residuals, i.e.,  and 

.  The Anderson-Darling normality test on the transferred data yielded a p-value of 
0.135 for r1i and a p-value of 0.175 for r2i.  Therefore, both of the transformed data sets are 
normally distributed at a level of = 0.05 and the paired t-test can be applied to compare them.  
The paired t-test was used to test if the difference between the mean of r1i  ( 2) and the mean of 

'
2ir  ( 2? ) is zero or greater than zero.  The hypotheses to be tested are as follows: 

 
H0: 1 - 2 > 0 
Ha: 1 - 2 > 0 

 
If the Type I error is controlled at = 0.05, then the p-value of the paired t-test can be compared 
to the  value according to the decision rule: 
 

If p-value , conclude H0. 
If p-value < , conclude Ha. 
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The p-value of the paired t-test is 0.000, which is less than 05.0?? .  Therefore, Ha is concluded, 
i.e., the mean difference is greater than zero or 1 is significantly greater than 2.  This implies 
that the Kalman predictor in combination with the time series method provides much better 
predictions of traffic flow rates than the time series method. 
 
 

Prediction of Traffic Congestion 
 
Once the traffic capacity of a construction zone is known, the dynamic prediction of traffic flow 
rates discussed above constitutes a dynamic prediction of traffic congestion at the construction 
zone.  As previously indicated, the traffic data used in the above example was collected at a 
crossover construction zone in the crossover direction.  From Table 1, it can be found that the 
traffic capacity of this type of construction zone in Indiana is 1612 passenger cars per hour.  
Thus, the traffic congestion at this construction zone can be predicted with the Kalman predictor 
method at each step of the prediction according to the following criteria: 
 

If  passenger cars per hour, then no congestion at time t+1 is predicted; 

If  passenger cars per hour, then congestion at time t+1 is predicted. 
 
 

Conclusions 
 
This study showed that using Kalman predictor in combination with the first-order 
autoregressive process of time series provided significantly improved traffic flow predictions 
over using only the time series method.  This Kalman predictor model can predict traffic flow at 
construction zones dynamically with newly available traffic data at specified time intervals.  
Therefore, it can be used as an efficient tool for real-time construction zone traffic control and 
can be applied in such areas as highway construction planning and scheduling.  A dynamic 
prediction of traffic flow rate at a construction zone with the Kalman predictor constitutes a 
dynamic prediction of traffic congestion as long as the traffic capacity at the construction zone is 
known. 
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Appendix A 
 

Comparison of Observed and Time Series Predicted Traffic Flow Rates 

Time Observed = f(t) Time Series = )1|(̂ ?ttf  Residual = f(t)- )1|(̂ ?ttf  
4:00 210 258.8 -48.8 
4:10 237 235.3 1.7 
4:20 328 260.4 67.4 
4:30 218 344.6 -126.2 
4:40 256 243.1 12.7 
4:50 311 277.8 33.0 
5:00 264 328.7 -65.0 
5:10 321 285.1 35.4 
5:20 226 337.8 -112.2 
5:30 328 249.8 78.2 
5:40 364 344.7 19.7 
5:50 310 378.5 -69.0 
6:00 300 327.6 -27.4 
6:10 257 319.0 -61.8 
6:20 449 279.0 169.9 
6:30 348 456.7 -108.6 
6:40 352 363.4 -11.2 
6:50 413 367.1 46.1 
7:00 434 423.7 10.4 
7:10 351 443.0 -92.2 
7:20 446 365.9 80.2 
7:30 501 454.1 46.5 
7:40 475 504.6 -29.3 
7:50 494 481.3 13.1 
8:00 535 498.9 36.3 
8:10 668 536.7 131.7 
8:20 595 660.2 -65.0 
8:30 581 592.4 -11.9 
8:40 719 578.8 140.3 
8:50 678 707.2 -29.0 
9:00 716 669.3 46.9 
9:10 585 704.5 -119.9 
9:20 736 582.6 153.3 
9:30 784 722.8 61.6 
9:40 633 767.6 -134.4 
9:50 834 627.6 206.8 

10:00 853 814.1 39.1 
10:20 962 686.2 276.1 
10:30 900 932.6 -32.6 
10:40 889 874.9 13.8 
10:50 675 864.3 -189.5 
11:00 784 666.1 117.6 
11:10 780 767.1 13.1 
11:20 804 763.8 40.1 
11:30 1026 785.8 239.9 
11:40 735 991.4 -256.9 
11:50 967 721.5 245.6 

12:00 929 937.0 -8.4 
Statistics of absolute values of residuals: 
         Mean=83.9                  Standard Deviation = 72.9 
         Minimum = 1.7            Maximum = 276.1 
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Appendix B 
 

Results of Time Series and Kalman Predictions 

Time Observed Time Series Kalman Time-Series 
Residual (TR) 

Kalman Residual 
(KR) Abs(TR)-Abs(KR) 

4:00 210 258.8 235.4 -48.8 -25.4 23.5 
4:10 237 235.3 259.6 1.7 -22.6 -20.8 
4:20 328 260.4 318.6 67.4 9.3 58.1 
4:30 218 344.6 280.2 -126.2 -61.8 64.4 
4:40 256 243.1 286.8 12.7 -31.0 -18.3 
4:50 311 277.8 319.9 33.0 -9.1 23.8 
5:00 264 328.7 305.8 -65.0 -42.1 22.9 
5:10 321 285.1 332.4 35.4 -11.8 23.6 
5:20 226 337.8 289.1 -112.2 -63.5 48.7 
5:30 328 249.8 330.4 78.2 -2.4 75.8 
5:40 364 344.7 366.0 19.7 -1.5 18.2 
5:50 310 378.5 348.4 -69.0 -38.9 30.1 
6:00 300 327.6 336.7 -27.4 -36.5 -9.1 
6:10 257 319.0 308.3 -61.8 -51.2 10.6 
6:20 449 279.0 405.0 169.9 43.9 126.0 
6:30 348 456.7 384.3 -108.6 -36.2 72.4 
6:40 352 363.4 379.0 -11.2 -26.8 -15.6 
6:50 413 367.1 411.1 46.1 2.2 44.0 
7:00 434 423.7 434.6 10.4 -0.5 9.9 
7:10 351 443.0 396.7 -92.2 -45.9 46.3 
7:20 446 365.9 436.0 80.2 10.1 70.1 
7:30 501 454.1 480.9 46.5 19.7 26.7 
7:40 475 504.6 483.3 -29.3 -7.9 21.3 
7:50 494 481.3 494.8 13.1 -0.5 12.6 
8:00 535 498.9 521.9 36.3 13.3 23.0 
8:10 668 536.7 606.3 131.7 62.2 69.6 
8:20 595 660.2 596.5 -65.0 -1.2 63.8 
8:30 581 592.4 584.6 -11.9 -4.1 7.8 
8:40 719 578.8 657.7 140.3 61.4 78.9 
8:50 678 707.2 661.7 -29.0 16.5 12.5 
9:00 716 669.3 684.5 46.9 31.8 15.2 
9:10 585 704.5 619.3 -119.9 -34.7 85.2 
9:20 736 582.6 679.8 153.3 56.1 97.3 
9:30 784 722.8 729.2 61.6 55.2 6.4 
9:40 633 767.6 662.9 -134.4 -29.7 104.7 
10:00 853 814.1 793.8 39.1 59.4 -20.3 
10:10 696 831.4 722.0 -135.0 -25.6 109.4 
10:20 962 686.2 844.2 276.1 118.2 157.9 
10:30 900 932.6 854.3 -32.6 45.7 -13.1 
10:40 889 874.9 851.7 13.8 37.0 -23.2 
10:50 675 864.3 731.2 -189.5 -56.4 133.1 
11:00 784 666.1 747.8 117.6 36.0 81.6 
11:10 780 767.1 751.9 13.1 28.3 -15.2 
11:20 804 763.8 766.7 40.1 37.3 2.8 
11:30 1026 785.8 896.0 239.9 129.7 110.2 
11:40 735 991.4 780.9 -256.9 -46.4 210.5 
11:50 967 721.5 868.5 245.6 98.6 147.0 
12:00 929 937.0 879.2 -8.4 49.4 -41.0 

Statistics of absolute values of residuals: 
                                  Time Series                                      Kalman 
Mean                              83.9                                                 37.1 
Standard Deviation         72.9                                                 29.0 
Minimum                        1.7                                                   0.47 
Maximum                       276.1                                               129.7 
 


